1 ## SEGMENTED PILLAR LAYOUT FOR A HIGH-VOLTAGE VERTICAL TRANSISTOR #### TECHNICAL FIELD The present disclosure relates to semiconductor device structures and processes for fabricating high-voltage transis- ## BACKGROUND High-voltage, field-effect transistors (HVFETs) are well known in the semiconductor arts. Many HVFETs employ a device structure that includes an extended drain region that supports or blocks the applied high-voltage (e.g., several hun- 15 dred volts) when the device is in the "off" state. In a conventional vertical HVFET structure, a mesa or pillar of semiconductor material forms the extended drain or drift region for current flow in the on-state. A trench gate structure is formed near the top of the substrate, adjacent the sidewall regions of 20 the mesa where a body region is disposed above the extended drain region. Application of an appropriate voltage potential to the gate causes a conductive channel to be formed along the vertical sidewall portion of the body region such that current may flow vertically through the semiconductor material, i.e., 25 from a top surface of the substrate where the source region is disposed, down to the bottom of the substrate where the drain region is located. In a traditional layout, a vertical HVFET consists of long continuous silicon pillar structure that extends across the 30 semiconductor die, with the pillar structure being repeated in a direction perpendicular to the pillar length. One problem that arises with this layout, however, is that it tends to produce large warping of the silicon wafer during high temperature processing steps. In many processes, the warping is permanent and large enough to prevent the wafer from tool handling during subsequent processing steps. ### BRIEF DESCRIPTION OF THE DRAWINGS The present disclosure will be understood more fully from the detailed description that follows and from the accompanying drawings, which however, should not be taken to limit the invention to the specific embodiments shown, but are for explanation and understanding only. FIG. 1 illustrates an example cross-sectional side view of a vertical HVFET structure. FIG. 2A illustrates an example layout of the vertical HVFET structure shown in FIG. 1. layout shown in FIG. 2A. FIG. 3A illustrates another example layout of the vertical HVFET structure shown in FIG. 1. FIG. 3B is an expanded view of one portion of the example layout shown in FIG. 3A. FIG. 4A illustrates yet another example layout of the vertical HVFET structure shown in FIG. 1. FIG. 4B is an expanded view of one portion of the example layout shown in FIG. 4A. # DETAILED DESCRIPTION In the following description specific details are set forth, such as material types, dimensions, structural features, processing steps, etc., in order to provide a thorough understand- 65 ing of the present invention. However, persons having ordinary skill in the relevant arts will appreciate that these specific 2 details may not be needed to practice the present invention. It should also be understood that the elements in the figures are representational, and are not drawn to scale in the interest of clarity. FIG. 1 illustrates an example cross-sectional side view of a vertical HVFET 10 having a structure that includes an extended drain region 12 of N-type silicon formed on an N+ doped silicon substrate 11. Substrate 11 is heavily doped to minimize its resistance to current flowing through to the drain electrode, which is located on the bottom of the substrate in the completed device. In one embodiment, extended drain region 12 is part of an epitaxial layer that extends from substrate 11 to a top surface of the silicon wafer. A P-type body region 13 and N+ doped source regions 14a & 14b laterally separated by a P-type region 16, are formed near a top surface of the epitaxial layer. As can be seen, P-type body region 13 is disposed above and vertically separates extended drain region 12 from N+ source regions 14a & 14b and P-type region 16. In one embodiment, the doping concentration of the portion of epitaxial layer which comprises extended drain region 12 is linearly graded to produce an extended drain region that exhibits a substantially uniform electric-field distribution. Linear grading may stop at some point below the top surface of the epitaxial layer 12. Extended drain region 12, body region 13, source regions **14***a* & **14***b* and P-type region **16** collectively comprise a mesa or pillar 17 (both terms are used synonymously in the present application) of silicon material in the example vertical transistor of FIG. 1. Vertical trenches formed on opposite sides of pillar 17 are filled with a layer of dielectric material (e.g., oxide) that makes up dielectric region 15. The height and width of pillar 17, as well as the spacing between adjacent vertical trenches may be determined by the breakdown voltage requirements of the device. In various embodiments, mesa 17 has a vertical height (thickness) in a range of about 30 μm to 120 μm thick. For example, a HVFET formed on a die approximately 1 mm×1 mm in size may have a pillar 17 with a vertical thickness of about 60 µm. By way of further example, a transistor structure formed on a die of about 2 mm-4 mm on each side may have a pillar structure of approximately 30 µm thick. In certain embodiments, the lateral width of pillar 17 is as narrow as can be reliably manufactured (e.g., about 0.4 µm to 0.8 µm wide) in order to achieve a very high breakdown voltage (e.g., 600-800V). In another embodiment, instead of arranging P-type region 16 between N+ source regions 14a & 14b across the lateral width of pillar 17 (as shown in FIG. 1), N+ source regions and P-type regions may be alternately formed at the top of pillar FIG. 2B is an expanded view of one portion of the example 50 17 across the lateral length of pillar 17. In other words, a given cross-sectional view such as that shown in FIG. 1 would have either an N+ source region 14, or a P-type region 16, that extends across the full lateral width of pillar 17, depending upon where the cross-section is taken. In such an embodiment, each N+ source region 14 is adjoined on both sides (along the lateral length of the pillar) by P-type regions 16. Similarly, each P-type region 16 is adjoined on both sides (along the lateral length of the pillar) by N+ source regions 14. Dielectric regions 15a & 15b may comprise silicon diox-60 ide, silicon nitride, or other suitable dielectric materials. Dielectric regions 15 may be formed using a variety of wellknown methods, including thermal growth and chemical vapor deposition. Disposed within each of the dielectric layers 15, and fully insulated from substrate 11 and pillar 17, is a field plate 19. The conductive material used to from field plates 19 may comprise a heavily doped polysilicon, a metal (or metal alloys), a silicide, or other suitable materials. In the